63\ MIT

——— nternatio
) Ir Trans

Nal

Center fFor

hortation

Trajectory Clustering and
Classification for
Characterization of Air Traffic

Flows

Mayara Condé Rocha Murca

Prof. John Hansman

JUP Meeting
April 21,2016



S . Motivation

* The Air Traffic Management System is characterized by
a highly computerized environmentin which massive
amounts of data are generated daily as
planning/operations occur

« Current system capabilities do not take full advantage
of this big data potential

— Example: Current traffic flow management initiatives rely on
imited empirical estimates of airport capacity (eg.: that do not
account for weather impacts in the terminal/transition

airspace)
« Future operations can benefit from big data analyfics
tools that provide/enhance the following capabillities:
— Post-event efficiency assessment
— Monitoring and alerting
— Real time decision support



- G Research Goal

« To develop an analytics framework for characterizing
historical trajectory patterns in the airspace that can be
used to evaluate the performance of past operations

and generate inputs for air traffic flow management
mechanisms
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S S Approach

« Development of a comprehensive data mining
framework based on recorded radar tracks and

weather impact measures in order to:
— ldentity major flight trajectory patterns

— Assess the conformance of flight trajectories with respect to
identified patterns

— ldentify and characterize patterns of airspace use and
associated causes
« Application fo an inifial case study G
— Tactical ATC operations in the '

transition/terminal airspace for the
New York Metro (JFK, EWR and LGA)




& 0 Dataset

« Sources and scope

— Flight trajectory data
« ETMS radar fracks: one minute updates of
aircraft state in the domestic airspace
— Weather impact measures
« En-route convective impacts: hourly blockage
status for NY departure routes from the Route
Availability Planning Tool (RAPT) —=
* Winds, ceiling and visibility: hourly airport m PR
weather report from the Aviation System ““ﬁ”w“”*:“ -
Performance Metrics (ASPM) database 2 SEREHE -
* Time period
— 1" phase: 70 days 2013-2015
— 2nd phase: 1000 days 2013-2015




. Methodology
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&= Clustering Analysis: DBSCAN

« Concept: a clusteris determined by a set of density-
connected points in the data space (Ester et al., 1996)

« TwoO Input parameters:

— MinPfs: Minimum number of points
— Epsilon: Distance threshold
» Epsilon—-neighborhood: N, (p)={q € D/dist(p.q)=<¢}

Core point: It contains more than MinPts in its [ ® ﬁ Outlier

Epsilon-neighborhood B “;;@'i-@ o
Border point: Itis density-reachable from a core | |Border |* & % @ ©

! Q0. e
point | @ @
L] L] ° . . - _6 ‘
Noise point (oullier): Itis not density-reachable ’C"rc ‘ *@_.Q'O
from any other point in the database ’ @

O




& 0 Resource Identification

|dentification of EWR Arrival Flows

arw po— oW

13 days of arrivals... ...23 clusters... ...23 Arrival Resources...

« Clustering algorithm parameters determined with sensitivity
analysis and cluster validity indices evaluation

« Resulting clusters captured ~92% of all trajectories (in other

words, 8% are non-conforming frajectories that do not fit fo any
of the identified clusters)
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SESL MIT Classification Scheme

= ICAT

Random Forests and Conformal Prediction

Random Forests determines the class of a new observation
by the majority of votes from an ensemble of decision trees
created from bootstrap samples of the data (Breiman, 2001)
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SESL MIT Classification Scheme

= ICAT

Random Forests and Conformal Prediction

« Conformal Prediction generates a confidence measure p for
the prediction (Shaffer and Vovk, 2008; Bhattacharyya, 2013)

* Non-conforming behaviors identified when p is less than a

threshold

Tree t,
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SESL MIT Classification Scheme
o AT Random Forests and Conformal Prediction

« Classification performance assessed with 5-fold cross
validation
— Resource assignment accuracy: > 98%
— Non-conformity detection accuracy: > 93%
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& 0 Resource Use Matrix

« Aggregation of classification results to generate @
Resource Use Matrix (RUM) for each day of operations

— A matrix is defined as a RUM if each element r; contains the
number of trajectories that arrived/departed using patterni
during hour |

 The RUM replaces individual trajectory records and
generates a compact representation of flows during
the day that can be used for:

— Pointwise comparisons of tactical operations

— Large statistical analysis of airspace use

17
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2 Resource Use Patterns

« Six aggregate modes of operation (Resource Use

Patterns — RUP) were identified for the NY Metro

RUP 1: High arr/dep throughput
— RUP 2: High dep, medium arr throughput
— RUP 3: Medium arr, low dep throughput
— RUP 4: High arr, medium dep throughput
— RUP 5: Low arr/dep throughput

— RUP 6: Medium arr/dep throughput, high non-conformance
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Resource Use Patterns

« Six aggregate modes of operation (Resource Use
Patterns — RUP) were identified for the NY Metro
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Resource Use Patterns

« Patterns are correlated with time of day and constraints

INn the system

— Probability of RUP occurrence by hour reveals major demand

patterns during the day
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High arr/dep throughput
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Resource Use Patterns

« Patterns are correlated with time of day and constraints

INn the system

— Probability of RUP occurrence by levels of convective weather
impact (RAPT) reveals interesting aggregate behaviors
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& 0 Resource Use Patterns

Detailed RUP characterization enables the quantification of
throughput reductions associated with weather impacts af
the route level and provides a foundation for the
development of predictive airspace capacity models
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&= Gr Summary and Next Steps

« Analytics framework for characterizing air fraffic flows
based on historical radar tracks

« Application to the NY Meftro

— ldentification of major trajectory patterns (under nominal and
off-nominal conditions)

— Assessment of trajectory conformance and identification of
days with significant irregularity in operations

— ldentification and characterization of resource use patterns

— Preliminary insights about how constraints imposed by
convective weather impact system throughput in aggregate
and individual route perspectives

« Development of predictive models of airspace

capacity that capture the actual behavior of the

system under different conditions can provide the basis

for tfactical traffic flow management mechanisms

24
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